
echolocating using an acoustic gaze that could also accommodate
the returning echo streams from objects more distant than the target
to avoid ambiguous range estimates from those objects (Verfuß

et al., 2005). For ICIs between 40 and 70 ms and assuming a sound
speed of 1500 m s−1, an echo will return for objects out to 30–53 m
range before the next click is produced and hence for target ranges
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above ∼2 m the porpoises used ICIs long enough to receive the
direct echoes from all objects ensonified within the net pen prior
to emitting a new click. In the pool, there were few other objects to
focus on apart from the target and the pool wall, and the distances to
other objects were all short relative to the target range, which likely
explain the stronger relationship between ICI and target range in this
environment. It seems that porpoises have considerable flexibility in
the way that click rates can be adjusted when homing in on just a
single target, which has also been seen in prey capture studies of
porpoises (DeRuiter et al., 2009) and other toothed whale species
(Wisniewska et al., 2014). The approach phase results of this study
(Fig. 4A,B) does therefore not support the concept of a somewhat
fixed average lag time (Au, 1993), i.e. a fixed delay from target echo
reception to next click emission. Biosonar inspection ranges have
previously been estimated for toothed whales based on the ICI
(Penner, 1988; Thomas and Turl, 1990) or ICI minus an assumed
fixed lag time (Akamatsu et al., 2005). However, there is increasing
evidence that lag time may not be fixed to target range (Wisniewska
et al., 2012; Madsen et al., 2013; Ladegaard et al., 2019) and also
observations of little to no range-dependent ICI adjustment over
large parts of target approaches (DeRuiter et al., 2009; Verfuß et al.,
2009) (Fig. 4A,B). Therefore, ICIs do not lend themselves to
straightforward range estimation of main targets, although they
might still serve as a useful proxy for the maximum biosonar
inspection range. Further, the fact that biosonar clicking rates may
change depending on the environment for the same species (Simard
et al., 2010; Madsen et al., 2013) (Fig. 4) suggests that ICI
distributions may be a weak parameter for species discrimination
in passive acoustic monitoring studies (Baumann-Pickering et al.,
2010).

Buzzing behaviour modified by context
Close-up inspection and interception of targets involves a buzz
phase of ultra-high clicking rates with ICI adjustments closely
related to target range (Wisniewska et al., 2014), although the
relationship may depend on echoic features of inspected targets
(Johnson et al., 2008). Here, we show that for the same target, the
porpoises clicked at ICIs that were longer in the pool than the net
pen, with a 14% difference in buzz ICI mode for Freja and 24% for
Sif (Fig. 4C,D). From this, we conclude that the different settings
provoked a change in the buzz phase biosonar behaviour, but

we cannot provide a definitive explanation for this change. The
porpoises may have sought to accommodate the delayed echo from a
strong reflector, the pool wall, in their buzz ICIs to avoid potential
range ambiguity problems associated with clicking too fast to
receive thewall echo between clicks. However, if the porpoises used
similar buzz ICIs in the pool as they used in the net pen, the direct
reflection returning from the pool wall 1 m behind the target would
still have returned before a new click was produced (Fig. 4C,D).
Therefore, the use of longer buzz ICIs in the pool is seemingly not
explained by some need to wait for the pool wall echo before the
next click is emitted. However, if there is an adjustment above a
minimum lag time in the buzz phase that does not solely depend on
target echo arrivals, it may be that longer buzz ICIs were used in the
pool to maintain a minimum lag time above ∼1 ms relative to the
pool wall echoes (Fig. 4C,D).

The buzz ICIs used by Amazon river dolphins, which inhabit
shallow rivers and seasonally flooded forests, are several times
longer than seen in other similar-sized toothed whales, and might
be an adaptation for echolocation in reverberant environments
(Ladegaard et al., 2017). The combination of relatively short
approach ICIs and longer buzz ICIs used by the porpoises in the
pool compared with the net pen thus resembles the adjustments used
by Amazon river dolphins during prey interception (Ladegaard
et al., 2017) and also preliminary data from a porpoise capturing fish
in the presence or absence of a clutter screen behind the fish (Miller,
2010). This suggests that the differences in ICI adjustments between
the two environments were made in response to differences in
clutter and reverberation levels.

Biosonar output levels
Porpoises and dolphins echolocating in open water have been
shown to produce much higher click SLs compared with
conspecifics in confined enclosures (Au et al., 1974; Villadsgaard
et al., 2007; Wahlberg et al., 2011). However, it is unclear whether
the observed SL differences are mainly the result of different ranges
to targets of interest between studies, because small toothed whales
often use range-dependent SL adjustments, and target ranges are
generally shorter in confined environments than in open water.
Here, we show that when two porpoises solved the same approach
task over the same approach distance in a pool and a net pen, the two
porpoises used 4–7 dB higher SLs in the pen compared with the
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pool (Fig. 5, Table S3). The similar change in SL adjustment
employed by the two porpoises between environments might seem
surprising given the 9–11 dB difference in average SL between
individuals. Sif’s use of higher SLs might have been the result of
poorer hearing compared with Freja, as Sif was treated with the
ototoxic antibiotic amikacin∼10 years prior to this study (Wahlberg
et al., 2017). It has been suggested that sensation level for porpoises
is proportional to the level above the hearing threshold (Tougaard
et al., 2015), so if Sif had a higher hearing threshold at high
frequencies, she might have used higher SLs to achieve echo
sensation levels similar to those of Freja, which would explain why
they made similar relative adjustments between environments. The
overall adjustments of on-axis SL with target range across animals
and environments was found to be 10–15log10(R), which is an
estimate unlikely to be biased by 20log10(R) filtering that can result
from clipping and detection threshold limitations (Fig. 3; Ladegaard
et al., 2017). This resembles previous observations of ∼15log10(R)
adjustments (Beedholm and Miller, 2007), but is lower than other
findings of 17–22log10(R) (Atem et al., 2009) and 21–23log10(R)
(Wisniewska et al., 2012). Porpoises therefore seem to operate their
biosonar using varying degrees of dynamic output adjustments as a
function of range to targets.
The low background noise levels (below the self-noise of the

SoundTrap; Fig. 6A) in both environments suggest that the
porpoises were likely operating under reverberation-limited sonar
conditions defined by their own click production rather than noise-
limited conditions. If reverberation-limited conditions applied, the
use of lower click SL in the pool should then bear no cost in terms of
the echo-to-reverberation ratio achievable in that environment. If so,
lower SLs would in fact have the benefit of decreasing the duration
that reverberations lasted in the environment following each click,
so if the porpoises adjusted the click rate to allow reverberation to
fall below some threshold level in between clicks, then lower SLs
will allow the use of higher sampling rates, as was also observed for
the pool environment. Lower SLs may further lead to less forward
masking of the outgoing click on the hearing side and therefore
provide better hearing thresholds in the first 30 ms after click
emission (Schrøder et al., 2017). Whether forward masking or
reverberation conditions set the detection threshold at short ranges
in the pool remains an open question. Based on our results, we
propose that co-dependent mechanisms involving SL, forward
masking, reverberation and ICI drive the different implemented
acoustic gazes in the two environments.

Conclusions
Here, we have shown that two harbour porpoises engaged in active
target approaches use different dynamic biosonar adjustments when
the same target approach task is performed in two different
environments. In a more reverberant PVC-lined pool, the porpoises
produced clicks at low SLs and clicked at shorter ICIs during the
approach phase than in the semi-natural net pen, whereas the buzz
ICIs in the pool were slightly longer. We posit that the different
biosonar adjustments were mainly due to different reverberant
properties of the two environments as they both had very low noise
levels.
This study demonstrates that harbour porpoises adjust their

biosonar depending on the context in which they are echolocating,
implying that SL and ICI may not be a direct indicator of target
range. Context-dependent biosonar adjustments add another layer of
complexity to understanding how toothed whales modify their
biosonar behaviour as they close in on targets in addition to the
range-dependent biosonar adjustments demonstrated for several

toothed whale species. The context-dependent implementation
of ICI and SL for the same target range also has implications for
passive acoustic monitoring both in terms of species identification
and detection ranges. Flexible biosonar operation has likely been a
major evolutionary driver towards establishing toothed whales as
apex predators in marine and riverine habitats across the planet.
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Supplementary Information 

Fig. S1 Received level distribution for clicks detected at the target in relation to clipping level. 

Histogram showing the distribution of received levels for the 156,015 clicks detected in the recordings 

of the target-mounted SoundTrap. The SoundTrap’s peak clipping level of 174 dB re. 1 µPa and the 

maximum peak-to-peak value of 180 dB re. 1 µPa that could be recorded are indicated as black 

vertical lines. Please see Ladegaard et al. (2017) for further discussion on signal clipping. 
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Table S1 Generalised linear mixed-effects model of ICI (ms) for 572 approach clicks recorded 

on-axis at target ranges exceeding 2 m. In this model, the standard condition for which the intercept 

is computed is porpoise Freja performing target approaches in the pool. 

Model information: 

Number of observations 572 
Fixed effects coefficients       4 
Random effects coefficients 270 
Covariance parameters 4 
Distribution Normal 
Link Identity 
FitMethod Laplace 
Model:  

ICI ~ 1 + range + enclosure type + range:enclosure type + (1 + range | trial) 

Model fit statistics: 

AIC        LogLikelihood    Deviance 
3839.7 -1911.9 3823.7 

Fixed effects coefficients (95% CIs): 

Name Estimate SE t-statistic df p-value Lower Upper 
Intercept 22.5 1.4 15.7 568 2.7*10-46 19.7 25.4 
net pen 32.6 2.0 16.5 568 3.0*10-50 28.7 36.4 
range 2.3 0.23 9.9 568 2.3*10-21 1.8 2.8 
range:net pen -2.2 0.32 -6.9 568 1.4 *10-11 -2.8 -1.6 

Random effects covariance parameters: 

Name1 Name2 Type Estimate 
Intercept Intercept std 6.57 
R Intercept corr -1 
R R std 0.75 

Error 

Name Estimate 
sqrt(Dispersion) 6.33 

Journal of Experimental Biology: doi:10.1242/jeb.206169: Supplementary information

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



Table S2 Generalised linear mixed-effects model of ICI (ms) for 297 approach clicks recorded 

on-axis at target ranges less than 2 m. In this model, the standard condition for which the intercept 

is computed is porpoise Freja performing target approaches in the pool. 

Model information: 

Number of observations 297 
Fixed effects coefficients       4 
Random effects coefficients 260 
Covariance parameters 4 
Distribution Normal 
Link Identity 
FitMethod Laplace 
Model:  

ICI ~ 1 + range + enclosure type + range:enclosure type + (1 + range | trial) 

Model fit statistics: 

AIC        LogLikelihood    Deviance 
1951.3 1980.8 1935.3 

Fixed effects coefficients (95% CIs): 

Name Estimate SE t-statistic df p-value Lower Upper 
Intercept 10.1 1.1 8.9 293 4.5*10-17 7.9 12.4 
net pen -6.1 1.9 -3.3 293 1.3*10-3 -9.8 -2.4 
range 8.4 1.0 8.1 293 1.3*10-14 6.4 10.5 
range:net pen 15.8 1.7 9.3 293 3.5 *10-18 12.4 19.1 

Random effects covariance parameters: 

Name1 Name2 Type Estimate 
Intercept Intercept std 0.55 
R Intercept corr -1 
R R std 2.65 

Error 

Name Estimate 
sqrt(Dispersion) 5.81 
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Table S3 Generalised linear mixed-effects model of SL (dB re. 1 µPa, pp) for 731 approach 

clicks recorded on-axis at target ranges, R, exceeding 1 m. In this model, the standard condition 

for which the intercept is computed is porpoise Freja performing target approaches in the pool. The 

intercept p-value of <2.2*10-308 means that the value is lower than the smallest positive normalised 

floating-point number in IEEE double precision.  

Model information: 

Number of observations 731 
Fixed effects coefficients       6 
Random effects coefficients 270 
Covariance parameters 4 
Distribution Normal 
Link Identity 
FitMethod Laplace 
Model:  

SLpp ~ 1 + log10(R) + enclosure type + porpoise + log10(R):enclosure type + log10(R):porpoise + (1 + log10(R) | trial) 

Model fit statistics: 

AIC        LogLikelihood    Deviance 
3679.7 -1829.8 3659.7 

Fixed effects coefficients (95% CIs): 

Name Estimate SE t-statistic df p-value Lower Upper 
Intercept 147.1 0.58 254.7 725 <2.2*10-308 145.9 148.2 
log10(R) 12.4 0.74 16.7 725 2.0*10-53 10.9 13.8 
porpoise Sif 8.6 0.67 12.7 725 1.0*10-33 7.2 9.9 
net pen 6.9 0.67 10.2 725 5.4*10-23 5.6 8.2 
log10(R):net pen -2.9 0.87 -3.4 725 8.0*10-4 -4.6 -1.2 
log10(R):porpoise Sif 2.2 0.87 2.6 725 0.011 0.52 3.9 

Random effects covariance parameters: 

Name1 Name2 Type Estimate 
Intercept Intercept std 2.96 
R Intercept corr -0.64 
R R std 3.03 

Error 

Name Estimate 
sqrt(Dispersion) 2.41 
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